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Foreword

This report was prepared as part of the Markov Models of Random Urinalysis Sampling Pro-
cedures project (Reimbursable, Work Unit 92PODD911) and the Statistical Methods for Drug
Testing project (Program Element 03058389N, Work Unit 0305889N.R2143.DR001), both spon-
sored by the Chief of Naval Personnel {PERrs-63). The objectives of the projects are to determine
if urinalysis strategies based on time since last test can be used to improve the Navy’s drug de-
terrence program and to develcp a unified set of statistical methodologies for the analysis of drug
testing programs and data. The work described here was performed during FY92 and FY93.

This is the second in a series of reports on the use of Markov chains for the analysis of random
urinalysis programs. The first report is Markov Chains for Random Urinalysis I: Age-Test Model
(NPRDC-TN-93-5). Related work also includes Probability of Detection of Drug Users by Random
Urinalysis in the U.S. Navy (NPRDC-TN-93-2).

MURRAY W. ROWE
Director, Manpower Systeins Department




Background

This is the second of a series of papeis on the 1se of Markov chaius to model random urinalysis
programs. Previous work (Thompson, Boyle & Hentschel, 1993) introduced the age-test Markov
chain. This chain was used to model random urinalysis strategiss stratified by time since last
tested. This paper extends the age-test model by including an absorbing state for detection of
drug users.

The Nuclear Regulatory Commission (NRC, [1988]) proposed a urinalysis testing strategy based
on time since last tested. That is, the probability of a person being tested depends on the amount
of lime since the person was last tested. Southern California Edison (SCE) has implemented a
variation (Murray & Talley, 1988) of the NRC proposal at the San Onofre Nuclear Generating
Station in Southern California. We Lave shown (Thompson, et al., 1933) that age-test urinaiysis
strategies trade off predictability of an individual being tested for fewe; people not tested within a
year and fewer people tested excessively during a year.

Objective

The objective of this work is to quantify the extent to which age-test urinalysis strategies can

mnd hee Ao wanaas
falh Uy Grug uacrs.

Approach

The approach includes (1) extending the age-test model to include an ahsorbing state for
detection of drug users, (2) developing the needed theory, aud (3) analyzing a number of specific
age-test urinalysis strategies.

Results

We define a class of age-test models extending the models presented in Thompson, et al. (1993).
The theory and formulas for calculating the distribution of time to absorption (e.g., detection of
drug users), the mean time to absorption and the expected nuinber of visits to intermediate states
(e.g., number of tests prior to detection) are developed.

This model is used to analyze three age-test strategies. These strategies include an age-test
model of the NRC proposal, an age-test model of the SCE process, and an age-test model meeting
Navy requirements and assuming a 15% monthly testing ratc. Th2 mean times to detection for
the NRC proposal are 58 and 200 months for nongaming and gaming drug users, respectively. The
mean times for the SCE process are 46 and 84 months. The mean times for the Navy model are
33 and 50 months. These results are hased an age-test models assuming drugs are detectable is;
the user 20% of the time.




Conclusions

Markov chains provide a framework for the systematic analysis of drug testing strategies strat-
ified by time since last tested. Age-test strategies do not change detection time for nongaming
drug users. As long as the annual testing rate is fixed, average time to detection is unchanged by
using age-test strategies. Age-test strategies do allow gaming drug users to significantly increase
time to detection. Constant testing strategies. defined by equal testing probabilities for all states,
are resistant to gaming,.
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1 Introduction

This is the second in a scries of papers on the use of Markov chains to model random urinalysis
programs. Previous viork (Thompson, Boyle and Hentschel, 1993) introduced the age-test Markov
chain. This chain was used to model random urinalysis strategies stratified by time last tested.
This paper extends the age-test model by including an absorbing state for detection of drug users.

The Huclear Regulatory Commission (NRC, [1988]) proposed a urinalysis testing strategy based
on time last tested. That is, the probability of a person being tested depends on the amount of tilne
since the person was last tested. Southern California Edison (SCE) has implemented a variation
(Murray and Talley, 1988) of the NRC proposal at the San Onofre Nuclear Generating Station in
Southain California. Urinalysis testing strategies based on time last tested are defined by (1) a
high testing rate for personnel not yet tested in a given time period and (2) a low testing rate for
personnel found to have negative resulis in a given time period. The NRC’s adopted rules and
regulations (Nuclear Regulatory Commission, 1989) for urinalysis do not require a time last tested
strategy. However, SCE continues to use thair variation of this strategy with NRC approval.

We have shown (Thompsor, et al., 1993) t{.at age-test urinalysis strategies trade off predictabil-
ity of an individual being tested for reduced tail arca of the distribution of the number of tests in
a fixed time period. Age-test strategies provide fewer people not tested within a ycar and fewer
people tested excessively during a year than siwple random sampling. Age-test sirategies zte also
more predictable, have lows: variance in the number of tests, and as a result are subject to gaming
by drag users.

Age-test models of both the NRC preposal and the SCE process were shown to have undesirahle
properiics. Tlhie NRC propousal requiread that at least 930% of the ind:viduals be tested each year and
that testing rates for irdividuals already tested wita negative results be at least 2.5% per month.
A misimuin cost uge-test model was developed for this propasal. SCE states a 5% anunual chance
of not being tested and a 1307 average annuai testing rate. An equal cost age-test mode! similar to
this process was developed. These strategies involve large differences in the testing rates between
people tested within the past year and thos: wno were not tested. This implies that, once tested,
an individual has a high probability of not being tested again within 2 year. These probabilities
are 0.74 for the age-test model of the NRC proposal and 0.48 for the age test model of the SCE
process. The age-test model of the SCE process is such that almost half the tests every menth are
given to people who know they will be tested.

A related use of Markov chains, modeling classes of drug users, is given in Evanovich (1985).
Previous work (Thompson and Boyle, 1992) at NPRDC includes models of detection and gaming
of drug users under simple random sampling.

This paper reports on our work to quantify the extent to which age-test urinalysis strategies
can be gamed by drug users. This paper (1) extends the age test model to include an absorbing
state for detection of drug users, (2) develops the needed theory, and (3) aralyzes a number of
specific age-test urinalysis strategies. The NRC proposal, the SCE process, and a model meeting
Navy requirements are analyzed.




2 Markov Chains

This section develops the theorv and notation that will Lo used in the rewainder of the report.
Here, we devclop the formulas for calculating the distribution of tinie te absorption (e.g., detection
of drug users), including mcan time to absorption and for calculating the expected number of visits
to intermediate states. It can ve cousidered a continuation of Section 2 ¢f Thompsor, et al. (1993).
Most of the material and notation is taken from Taylor «nd Ka.lin (1984) and Hoel, PPort and Stune
(1972).

Again, we consider finite state Markov chains, but with the following special structure. The
states are labeled 0,1,..., N with transient states 0,1,...,r~1 and absorbing states r,r+ 1,..., N,
A state a is absorbing if, ouce at a, the chain stays at a for all time. Also, starting at any transient
state, the chain must be eventually trapped by one of the absorbing states. The transitior matrix
for such a Markov chain can be partitioned as

e [31]

where Q is an 7 x r matrix, Ris an r x (N — r 4+ 1) matrix, O is an (N -7+ 1) x r ratrix of zerc
entries, and I'is the (N — v+ 1) x (N = r 4 1) identity matrix.

Using matrix algebra it can be shown that the n-step transition matrix is
no[Q A4Q4 -+ QIR |
S ENUEREEY o

for n > 2. Also, from page 20 of Hoel, et a1. {1972), Q™ — 0 as n -+ 0o. Thus, the infinite series
(I+Q+---4+Q") - (I-Q)! =W as n — oo, and from Equation 1

o I (2)

s [2]

Let ujg(n) be the ith row, ath column entry from the r x (N — 7+ 1) submairix (I+ Q +---+
Q" ")R in the n-step transition matrix, Equation 1. From page 15 of Hoel, et al. (1972), we have

uo(n) = P[T, < n,X7 = alXp = i) (3)

where T, is the time to absorption by state a, 7' is the time to absorption for the process, and 1 is
any of the transieut states. Equation 3 states that the (i,a) entry in the submatrix from Equation 1
is the probability that, suarting at state i, the process is absorbed by state a within n time periods.
By basic probahility laws,

nlll.go tia(n) = P[XT = a|Xo = 1] = ujq.

Thus, u;, is the (i,a) entry of the submatrix U = WR in Equation 2, and we have observed that
the entries in the ith row of U represent the probabilities, starting at state i, that the process will
be trapped by the various absorbiug states.




Another way to esiallish that U = WR is to employ what Taylor and Karlin (1984) call first
step analysis. Note

uy, = P[XT =4a]X,

i

= P[XT =a, x\'l = 0|X0

r—-1
i]4 3" P[X1 = ¢, X1 = jI X = i]
=0

i]P[,Yl = GIXQ = i]

* = P[/\"]‘ = ale = G,Xo
r=1
+ 3 P[X7 = alXy =5, Xo = §)|P[Xy = j|Xo = i]

=0

r=—1
-

= P.’a+$ UjaPij.
=0

In matrix notation the above relations become

oy Poa
i ug M
a-qf * [=1 " i a=r..,N
Ur—la l Pr-1a }

These equations can be summarized in the single matrix equation (I - Q)U = R and we see that
U=1I-Q) 'R =WR.

The matrix (1 - Q™' = W is often called the fundameintal matrix. First siep analysis can be
uscd to yield a probabilistic interpretation of the elements of W. Let i and & be transient states
and set

-1
vik = E |3 1i(Xa)| Xo = .‘] (4)
n=0 J
where 1;{ X, ) is the indicator function associated with state k. The expiession in Equation 4 is the
expected or mean number of visits to state k before absorption, given the process starts at state i.
Usiug conditional probabilities we see that

N T-1
vy = ZE [E L(Xu))| X1 = a,Xo = ;‘] P[X; = a}Xo = i)
a=r n=0
r=1 i T~1
+ ZE z Le(Xa)l Xy =5, Xp = i] P{X, = j|Xo =1]
y=0 r=0
N r-1
= T L(Dpie + 310 + L())pi;

as=r j=0

r=1

= b+ Y v (5)
3=0

for i,k =0,1,...,r — 1. The last equation fcllows since P is stachastic and its rows sum to unity.
6% is the Kronecker delta, which equals 1 when i = k and equals 0 ntherwise.



The set of Equations 5 has the matrix represeniation

[ 1 ~ poo =Pui ~Pur-1 1T vee ]
-ro l-pn -Pir-1 LY
=Cx
[ =Pr-10 —Pr-11 1 =prcte-r J L vvcri

where e is the kth column of an r x r identity matrix. Combining all systems in Equation 6 for
k=0,1,...,7r — 1 leads to the single matrix equation

Yoo Ygr-1

a-qf . : =1 (7)

Ur-10 Ur-1r-1

From Equation 7 it is clear that v, = w;, and w;; equals the mean number of visits to state k
from state i before absorption. When 1 = k in LCquation 4, the expectatior counts the starting
state 1 as a visit to state i,

Lastly, define W, as the number of visits to state k for £ = 0,1,...,r — 1. Clearly, we must
have
T =W,

s o u,r-l

where, again, T equals time to absorption. Hence
'r 1 'I r—1

E[T|Xg=1i]=E I-.Z WilXo = iJ = 2 Wik
=0 k=0

and we may compute the expected time to absorption sta~ting at state i as the suin of the elements
in the ith row of the matrix W.

3 Age-Test With Absorption

We now define a class of age-test models extending the models presented in Section 3 of Thamp-
son, et al. (1993). The transition matrix is

(1=a1)m
(I-a)pz 0 g2 O
(1 - a3)ps

o

azp2

(1-agdpg 0 0 O qd a4py
(l-ag41)pass 0 0 O dd+1  Qd41Pd41
G 1




In Equation 8, an individual is in state 7 (1 < 7 < d) if the individual tested negative i time periods
ago, and in state d + 1 if tesied 4 4 1 or more time periods ago. The p,’s are the probabilities of
being tested given state ¢, and the a,’s are the conditinnal probabilities of a positive result given
the individual is tesied. State d + 2 i¢ ile single absorbing state defined in Equation 8. A person is
absorbed or caught if tested positive To suminarize, an individual residing in state ¢ (1 < i < d)
must in the next pericd test negative and move to state 1, age to statz i + 1, or be absorbed to
stute d + 2 by testing positive. A peison in state d + 1 “ages” by staying in state d + 1.

Asip Section § of Thompson, et al. (1993), we impose the restrictions 8 < p;,...,ps < 1 and
0 < py4y) £ 1. We allow the a;’s to Le unrestricted probabilities, i.e. 0 < a),...,aq44; < 1, except
we insist at least cne of the o;’s be positive. All of this guarantees that states 1 through d + 1
must lead to the absorbing state and, by Theorem 2 on page 21 of Hoel, et al. (1972), these states
are transient and the resuits froin Secticn 2 apply.

3.1 Time to Absorption

Using the notation frcm the previous section we have

-

(1-a))py @i 0 0 - 0 ] [ oip;m ]
(1 = az)p, 0 ¢ 0 --- 0 azp2
d-a3)ps ¢ 0 ¢g --- O a3p3
Q= ) .. . R= . (9)
(1 - ad)ps 0 60 0 -+ q o4p4
| (1—ag41)pasr 0 0 0 gd+1 | @d41Pd41 |

The matrix U=(I-Q)"'"R=WR =11isa (d+ 1) x 1 column of 1’s, since there is only one
absorbing state and the process is absorbed with certainty. Also, for the same reasons, 7' = T, =
T441 and {X7 = d + 1} is the certain event. Thus, from Equation 2 of Section 2, we have

ua41(n) = P[T < n| Xy = 1] (10)

equals the distribution function of time to absorption, conditional on the process starting at the
transient state 7. This is precisely the ith element of the (d+1)x L column (I+ Q +--- + Q" HR.

We can also define the mean time to absorption E{T|X, = i) through a limiting argument.
From elementary methods, the expected value of a random variable takiug on positive integer
values is "

Jim 1+ k;[l - F(k)] (11)
where F is the distribution function of the random variable. Applying Equation 11 and using
Equation 10 yields

E(T|Xo=1)=1+ r‘132.0{2;[1 — tjg41(n)) (i2)
where we have conditioned on the event Xg = i. The result Equation 12 can be put into matrix
terms as

14 lim nl-R+(T+QR+---+(1+Q+---+Q" )R]




=1+£&nrqa—mwm+u—Q%WR+m+a+Qﬂwm
= 1+ lim a1 - [(I-Q)+ (I~ Q)+ - +(I+Q")1
since WR = 1. The above limit reduces tv
1+ lim al - [n1-(Q+Q°+---+ Q"))
= 14 lim (Q+Q°+---+Q")1
= 1+ lim[T- Q™ H)W-1I)1
L4 (W =)0
= Wi

because L .o Q™! = 0. Again we note that the expected time to absorptiorn, starting at state i,
is the sum of the clements in the sth row of W,

3.2 Number of Tests Prior to Absorption

Recall from Section 2 that, in general, wix equa's .e mean number of visits to siate k prior to
absorption, starting at state :. For the age-test model with abksorbing state, we will be interested
in calculating the mean number of tests prior to absorption. Since testing negative is eguivalent to

visiting state 1, this amounts to selecting the ith element from the fitst column of the fundamental
mairix 'W.

3.3 Drug User Gar g

An interesting problem arises in considering the process of Equation 8. Given a fixed set of
Pi's, a drug user might be interested in choosing a;’s in such a way that their average usage rate is
at a desired level and the mean time to absorptior is a maximum. Here we define the usage rate
as
aWi +--- + a1 Wan

Wi+ + Wi
where, again, W; represents the number of visits to state &k prior to absorption. The average or
expected usage rate, starting in state i, is E(Y|Xy = 1) and represents the average percentage of
time that the user would test positive prior t¢ absorption. Since taking the expectation of a ratio
of random variables is somewhat intractable, we henceforth approximate the average usage rate
with the ratic of expectations, i.e.,

Y =

E(Y|Xo = i) = awiyt+ 4 Qi1 Widl
Wi+ -+ Wid4

Formally, the drug user, knowing the p;’s, wishes o find the a;’s that

Maximize E(T|Xo=1)= w1+ -+ Wigp (13)

a Wiy + o+ Qg Widy
wip + -+ wigy

subject to =a

0<o; <1 Vi




where & is some desired average usage rate. The next section contains a number of examples
illustrating Equation 13.

We conclude this section with a result proved in the Appendix. Ifthe p;’s are equal in Equation ¢
or the o;’s are all equal to @ in Equation 13, the mean time to abscrption, starting at state 1,
is given by 1/m&. Equal p,’s means testing rates are the same regardless of state and equal «;’s
means drug usage rates are the same regardless of state. Here m; represerts the expe:ted number
of tests per time period for a nonuser starting at steady state. Steady statr is defined in Thompson,
et al. (1993).

This result is very important for two reasons. First, urinalysis strategies with equal p;’s cannot
be gamed. To prevent gaming, age-test urinalysis strategies with unequal p;'s should be avoided.
Second, age-test urinalysis strategies with unequal p;’s do not change mean time to detection for
aongaming drug users. Mean time tc detection for nongaming drug users is only a function of the
average test rate. This implies age-test strategies are not problematic if gaming is not a concern.

4 Applications

Three age-test strategies presented in Thompson, et al. (1993) are revisited here. These
strategies are the age-test model of the NRC proposal, the age-test mode! of the SCE process, and
the age-test model meeting Navy requirements and assuming a 15% monthly testing rate.

The number of tests prior to detection, and the time to detection for hoth nongaming and
gaming drug users is presented for all three age-test strategies. Average drug use {&) for all
following examples is 0.20. That is, drugs are detectable in a user’s system an average of 20% of
time or about 6 days per montk. This is roughly equivalent to using drugs twice a raonth.

4.1 Nuclear Regulatory Commission (NRC)

The Nuclear Regulatory Commission (1988) proposed two urinalysis testing alternatives. One
alternative required that at least 90% of the individunals are tested each year and that testing
rates for individuals already tested with negative results be at least 2.5% per mounth. The age-
test strategy {p1 = p2 = ... = p12 = 0.025 and p,3 = 0.6338} is the least cost solution to this
NRC proposal. The distribution of the number of tests within 12 months is shown in Figure 1.
By contrast, simple random sampling at the 103% annual rate (same rate as the minimum cos*
age-test model) gives a 34% chance of no tests and a 7.7% chance of 3 or more tests.

Time to detection results are presented in Table 1. Average drug use is the same (20%) for
both the nongaining and gaming drug user. The gaming ctrategy is the obvious one. Drug usage in
state 13 is ret to zero. To keep average usage at 20%, drug usage in states 1 through 12 is increased
to 22%. The average time to detection increases significantly from 58 months to 200 months. Also,
the average number of tests prior to detectioa increases from 5 to 17 tests. If detection of drug
users and prevention of gaming are high priorities, this age-iest strategy should not be used.
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Figure 1. Steady steie d' tribution of number of tests within 12 months for age-test
model of NRC preposal.

Table 1
Time (in Months) to Detection for Age-Test Model of NRC Proposal

Drug User
Nongaming Gaining
Mean 58.2 200.2
15t Quartile 20 38
2nd Quartile 4] 128
3rd Quartile 79 278




4.2 Southern California Edison (SCE)

SCE has implemented a composite random sampling (Murray & Talley, 1988) approach to
urinalysis. Their approach is based on a sampling scheme that is part s: .apling with replace-
ment (individuals are subject io sampling after having been selected) and part sampling without
replacement (individuals are not subject to sawmpling after having been selected). The entire pop-
ulation is samplad at a specified rate with replacement. People who have not been sampled within
the past year are sampled at another specified rate without replacement. SCE states a 5% an-
nual chance of not being tested and 2 130% average annual testing rate. The age-test strategy
{p1 = p2 = ... = p12 = 0.0595, p13 = 1.0} yields similar results. The distribution of number of
tests within 12 monthe is shown in Figure 2. Simple random sampling at the 130% annual rate
gives a 25% chance of no tests and a 13% chance of 3 or more tests.

Time to detection results are presented in Table 2. The gaming strategy is, again, the obvinus
one. Drug usage in state 13 is set to zero. To keep average usage at 20%, drug usage in states 1
tarough 12 is increased to 21%. The average time to detection increases significantly f{roiu 46
months to 84 months. Also the average number of tests prior to detection increases from 5 to 9
tests. If detection of drug users and prevention of gaming are high priorities, this age-test strategy
should not be used.

1.0 +

+ .661

6 T
Probability 1 Mean = 1.30
4 - Variance = 0.462

+ 231

o - [— 007 .001
0 1 2 3 4 5+
Number of Tests

Figure 2. Steady state distribution of number of tests within 12 months for age-test
model of SCE’s process.

4.3 United States Navy

U.S. Navy policy (Chief of Naval Operations, 1990) directs commands to test 10-20% of their
personne! each month. We developed an age-test strategy {p; = p2 = p3 = 0.1, p; = 0.1145,




Table 2
Time (in Months) to Detection for Age-Test Model of SCE Process

Drug User
Nongaming Gaming
Mean 46.2 83.9
1st Quartile 15 24
2nd Quartile 33 58
3rd Quartile 63 116
Ps = ... = p13 = 0.2} that maximizes the nuriber of people tested at least once a year given an

average monthly testing rate of 15% and giveu all p; between 10 2nd 20%. The midpoint value 15%
was chosen. Although the Navy does not use this strategy, the strategy does comply with Navy
policy. For this age-test strategy, the distribution of number of tests withir 12 months is shown in
Figure 3. Simple ranaom sampling at the 180% annual rate gives a 14% charce of no tests and a
8.2% chance of 4 or more tests.

Time to detection results are presented in Table 3. A gaming strategy that seems reasonable
is as follows. Drug usage in states 1 to 3 is increased to 30%; drug usage in states 5 through 13
is decreased to 12%. To keep average usage at 20%, drug ucage in state 4 is et at 18.5%. The
average time to detection increases moderately from 33 months to 38 months. Also, the average
number of tests prior to detection increases from 5 to 6 tests. Since this gaming strategy yielded
only slight gains, we calculate! the optimal gaming strategy. Results from using this strategy are
also included in Table 3. This optimal gaming strategy is 100% usage in state 1, 37% usage in
state 2, and zero usage for all other states. Using it increases the average time to detection to
50 months. Although this strategy does not seem reasonable, it is presented to show the optimal
amount of gaming possible. This age test strategy, which contains no large differences in the values
of the p;’s, limits the amount of gaming possible for users.

4.4 Rejative Merits

We conclude this section with a comparison of these three age-test strategies. Assume Comvany
XYZ has 100C employees ard the typical drug user has drugs detectable in their system an average
of 6 days per munth. Also assume that one urinalysis test costs $10.00. A comparison of the relative
merits of the 3 age-test strategies is shown in Table 4. The number of tests per year is simply 1000
times the average number of tests per person per year. The average number of tests per persor
per year is obtained from the steady state distribution of the Markov chain without an absorbing
state. The table aiso includes the number of months until detection with probability 0.10, 0.50
and 0.95. Both gaming and nongaming times are presented. The optimal gaming strategy is used
for the age-test model meeting Navy policy.

'Excel Solver (Microsoft Corporation, 1991) was used to solve optimization problems.
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Figure 3. Steady siaie disirib' - .on of number of tests within 12 months for an age-test
model meeting Navy requirements.

Table 3

Time (in Months) to Detection for an Age-Test Model
Meeting Navy Requirements

At e

Diug User
Optimal
Nongaming Gaming Gaining
Mecan 23.3 38.3 50.0
1st Quartile 1 11 11
2nd Quartile 24 27 33

3rd Quartile 46 53 71




Table 4
Relavive Merits of Three Age-Test Strategies

Age-'l‘e?t—Strategy

NRC SCE Navy

Number of Tests per Year 1030 1300 1800
Cost per Year $10,300 $13,000 $18,000

Nongaming User Time in Months

Detection Probability 0.10 13 9 5
0.50 41 33 24
.95 163 131 97

Gaming User

Detection Probability 0.10 21 9 1
0.50 128 58 33
0.95 600 250 157

Company XYZ: 1000 employees, typical drug user has
drugs detectable in system 20% of the time.

5 Conclusions

Markov chzins provide a framework for the systemacic analys's of drug testing strategies strat-
ified by time last tested. For nonusers the steady state distribution provides estimates of the
number of tests per month and the number of people who have not been tested in the past year.
The distribution of the number of tests in a fixed time period (e.g., year), given any initial state,
can be calculated. Furthermore, given t sting cost estimates, the relative merits of different testing
strategies can be easily calculated. For drug users, tke distribution of time to detection and the
expected number of tests prior to detection can be calculated given any initial state.

Age-test urinalysis strategies trade off predictability of an individual being tested for reduced
probability of not being tested and reduced probability of excessive tests. Thi: -educed tail area
of the distribution is sometimes nerceived as more equitable.

Age-test does not change detection for nongaming drug users. As long as the annual testing
rate is fixed, average time to detection is unchanged by using age-test strategies. Therefore, if
gaming drug users are not a concern, age-test may be beneficial.

Age-test allows gaming drug users to significantly increase time to detection. The more ex-
treme the age-test strategy, the more gaming is possible. Extreme strategies have large changes in
probability tested over time (since last tested).

Constant testing strategies are resistant to gaming. Constant strategies are defined by ¢ ;ual
probabilities of testing by state. Since the past and present provide no information about the
future, gaming as defined here is impossible.
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Appendix

Minimax Gaming



Minimax Gaming

This aprendix proves the result mentioned at the end of Scction 3.3. A minimax theorem
associated with gaming is also established.

Recalling the definition of Q from Equation 9, we have

apr+q -1 0 0 --- 0 0
2Pz — P2 1 —-q 0 0 0
a3p3 — p3 0 1 —¢3 -+ 0 0
I-Q= '
agpd — Pe 0 0 o ---1 ~Qd
| Qg41Pd41 — P10 0 0 -+ 0 1-gq441 ]

We are interesied in deriving the first row of the fundamental matrix W = (I-Q)~}. The first
row of W provides the mean number of visits to each transient state prior to detection given the
system starts in state 1. First we calculate the determinant of (I — Q). Expanding by elements of
the first column yields

d+1
DET(I - Q) = DPin [alpl + Q1 + Z(QJ’. "P-)T:- ]
=2
d+1 d+1
= P 1[ oy + 5_: ]_4_,,, :[q:—EP:T;--z] (A1)
L =2 =2

where we define r; = ﬂ;a g,i=1,...,d-1;and 74 = (q1 - - ga)/Pa+1- It can be shown that the
last expression in Equation Al vanishes. Thus

d4+1 ]
DET(I ~ Q) = pi+1 [011’1 +) ﬂ-‘PiTi-lj . (A2)

=2
Next, observe that the cofactors of the first column of (I — Q) are
[Pas1s Pas171, Pa1T2y - -+ s Pd41Td=1s Pa417d] - (A3)

Since this row equals the first row of the adjoint of (I — Q), the first row of W is expression A3
divided by the expression in Equation A2.

From the above arguments, we can write Equation 13 of Section 3.3 and the associated con-
straint as

d
Pd+1 ZT-‘

Maximize E(T|Xp=1) =0

1
Pd+1 [Oupl + L 0-‘1’:‘"-’—1]
1=2

1

d+1
LS| [alp- + ZaiPiT.'-l]

1=2

(Ad)

]

A-1




d+_l

Z a7y
i1=1

d+1

Z Ti-1

=1

]
R

subject to

where we set 7 = 1. The constiaint FEquation A5 can be solved for ay4; to yield

o441 = @+ Z - L& - ay). (A6)
=1

Since 7; does not involve the a,’s, maximizing E(T|Xo = 1) with respect to the a;’s is achieved
by minimizing the bracketed expression in Equation A4. Substituting the right side of Equation A6
for a44q in Equation A4 leads to

d+1

ap; + Z QpiTi-1
.@2

= ZG.P.T.-l + [a + Z-——(a - a.-)] Pdsr7d

d
= ZG iTi-1 — T(a ai)piti-1 + [a + Z ™ =l - a.)] Pd+17d

=1 =1
d+1

= @) piTia+t 2: Ti1{pa+1 — pi)(@ - @)
=1 i=1
Recalling the definition of the 7;’s, note that

d+1
E:Pm-x = pTot+tmTi+ ..o+ paTd-1 + Pdy1Td

=1
ntpaq+ ...+ palgr-qao1) + (@0 qd)
1

by an induction argument. Thus we have proved that

1

d
m [& + Y ria1(pasr - pi)(@ - ;)

=1

E(T|Xo=1)=

(AT)

and maximizing E(T|Xo = 1), for fixed p,’s, subject to Equation A9 is equivalent to the optimiza-
tion problem

d
Minimize @+ ) Ti-1(pap1 - pi)(& — &) (A8)
=1
subject to 0<a,~$l' i=1,...,d (A9)
0<ad+1—a+z-——a a;) < 1. (A10)

i=1 Td

A-2




Becausc of Equation A7, we have shown
ET|Xo=1)= !
0= - 7l'1(-1
- whenever a1 = az2 = ... = (g = Qd41 0T 1 = P2 = ... = pg = pay1- This gives the first result.
It is not difficult to show that given increasing, not all equal p,’s, one can construct a feasible
X solution to Equations A9 and A10. This solution takes the following form
al,. . 0p_; =1
0<a;p <1
A ppre--10gy =0,
By inspection of all cases for values of k = d + 1,d,...,1, it can also be shown that a soluticn of
this form will provide Equation A8 strictly less that 4. This guarantees that the objective functicn

A8 is strictly greater than 1/m&. Therefore, the maximem expected time to detection for the
gaming drug user is minimized when the p,’s are equal. This establishes the minimax theorem.
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